Over 30 Texas Auctions End Tomorrow 09/20 - Bid Now
Over 700 Total Lots Up For Auction at Five Locations - CA 09/23, NY 09/24, CA 09/27, UT 10/01, MI 10/03

Machine learning models for diagnosing COVID-19 are not yet suitable for clinical use

Press releases may be edited for formatting or style | March 16, 2021 Artificial Intelligence
Systematic review finds that machine learning models for detecting and diagnosing COVID-19 from medical images have major flaws and biases, making them unsuitable for use in patients. However, researchers have suggested ways to remedy the problem.

Researchers have found that out of the more than 300 COVID-19 machine learning models described in scientific papers in 2020, none of them is suitable for detecting or diagnosing COVID-19 from standard medical imaging, due to biases, methodological flaws, lack of reproducibility, and ‘Frankenstein datasets.’

The team of researchers, led by the University of Cambridge, carried out a systematic review of scientific manuscripts – published between 1 January and 3 October 2020 – describing machine learning models that claimed to be able to diagnose or prognosticate for COVID-19 from chest radiographs (CXR) and computed tomography (CT) images. Some of these papers had undergone the process of peer-review, while the majority had not.

Their search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 62 studies were included in the systematic review. None of the 62 models was of potential clinical use, which is a major weakness, given the urgency with which validated COVID-19 models are needed. The results are reported in the journal Nature Machine Intelligence.

Machine learning is a promising and potentially powerful technique for detection and prognosis of disease. Machine learning methods, including where imaging and other data streams are combined with large electronic health databases, could enable a personalised approach to medicine through improved diagnosis and prediction of individual responses to therapies.

“However, any machine learning algorithm is only as good as the data it’s trained on,” said first author Dr Michael Roberts from Cambridge’s Department of Applied Mathematics and Theoretical Physics. “Especially for a brand-new disease like COVID-19, it’s vital that the training data is as diverse as possible because, as we’ve seen throughout this pandemic, there are many different factors that affect what the disease looks like and how it behaves.”

“The international machine learning community went to enormous efforts to tackle the COVID-19 pandemic using machine learning,” said joint senior author Dr James Rudd, from Cambridge’s Department of Medicine. “These early studies show promise, but they suffer from a high prevalence of deficiencies in methodology and reporting, with none of the literature we reviewed reaching the threshold of robustness and reproducibility essential to support use in clinical practice.”

You Must Be Logged In To Post A Comment