Russian researchers develop new lung cancer detection software

por John R. Fischer, Senior Reporter | February 07, 2019
Health IT
The Doctor Alzimov system can assess
patient CT scans for the presence of
lung cancer in less than 20 seconds
Russian researchers have developed a new intelligent software system that can assess the presence of lung cancer within mere seconds.

Named Doctor Alzimov after science-fiction writer Isaac Asimov, the solution is designed to assess CT scans within 20 seconds with artificial intelligence and produce an image in which the pathology is clearly marked.

"Lung cancer is among the most widespread diseases in the world, including the Russian Federation. In Russia, there are not so many clinics that are engaged in developing the systems for lung cancer diagnostics, so this inspired our scientific group to start our research," Professor Lev Utkin, head of the Research Laboratory of Neural Network Technologies and Artificial Intelligence of Peter the Great St. Petersburg Polytechnic University (SPbPU). "So when we discussed the area of research with the doctors from St. Petersburg Clinical Research for Specialized Types of Medical Care (Oncological), we decided that this area is the most prospective for the use of the artificially intelligent system."
DOTmed text ad

Reveal Mobi Pro now available for sale in the US

Reveal Mobi Pro integrates the Reveal 35C detector with SpectralDR technology into a modern mobile X-ray solution. Mobi Pro allows for simultaneous acquisition of conventional & dual-energy images with a single exposure. Contact us for a demo at no cost.

Clinicians can spend 30 minutes to hours evaluating the CT of one patient. Doctor Alzimov acts as an assistant to the doctor by speeding up the process of analysis.

Initially setting up its algorithm to search for nodules starting from six millimeters, the size of tumors that radiologists start treatment for, the researchers found the system to be capable of detecting nodules of even smaller sizes.

The purpose of the solution is to differentiate malignant and benign nodules as well as metastases. It can also detect metastasizes from different organs and non-oncological diseases, such as tuberculosis.

The system relies on the chord method, a newly proposed and developed approach for lung cancer classification that was patented within only three months. Using segmented CT images, the technology randomly draws points on the surface of a nodule, with chords connecting them. The length histogram of the chords reflects the shape and structure of the tumor.

To learn more about external surroundings of each nodule, the tumor is placed in a cube with perpendiculars drawn from its edges to the surface of the nodule. This creates a compact and simple histogram for the nodule that can be read by the Doctor Alzimov system, rather than a graphically complex and heavy image of the CT.

Training for the system was derived from the analysis of 1000 CT images from LUNA 16 and LIDC datasets, as well as images of about 250 patients whose information was stored in the researchers’ own data set, Lung Intelligence Resource Annotated.

You Must Be Logged In To Post A Comment