DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
Ubicación actual:
> This Story

Conexión o Registro to rate this News Story
Forward Printable StoryPrint Comment




CT Homepage

FDA okays Philips' MR-only radiotherapy simulator, MRCAT pelvis Create treatment plans for bladder, rectal, anal and cervical cancer

Study calls for better factoring-in of patient complexity in head CT scans Should consider complexity of associated billed patient encounters

Study shows 30 percent drop in unnecessary head CTs with BrainScope One May help ensure appropriate use of imaging

MR method could spare patients with skull lesions from CT, says study Could benefit children and pregnant women

FDA clears GE’s AI-based CT image reconstruction technology Available as upgrade to Revolution Apex scanner

First ultra high-res CT scan performed on US patient Scanner at UC Davis can image anatomy as small as 150 microns

Industrial hi-res X-ray yields greater insight into child abuse case Identified microscopic injuries that would not have been detected with standard CT

Trice Imaging connects imaging devices of large chain healthcare provider Aleris Patients and physicians can view images on laptops, cell phones

Reducing extravasations in CT contrast-enhanced IV injections Tips and best practices for administering better care

Researchers orchestrate malware attack to expose imaging vulnerabilities Deceived radiologists and AI algorithms into misdiagnoses

A new technique promises to cut down
the rate of false positives in lung
cancer diagnoses, without missing
a single case of cancer

Machine learning reduces false positives for lung cancer in low-dose CT

por John R. Fischer , Staff Reporter
While the standard diagnostic test for early detection of lung cancer in those at high-risk, low-dose CT produces false positives at a rate of 96 percent. That may soon change with a new technique developed at the University of Pittsburgh and UPMC Hillman Cancer Center.

Using machine learning, researchers were able to reduce false positives while still identifying every case that carried a malignancy, a feat they claim is the first example in which AI has been used to differentiate benign from cancerous nodules in lung cancer screenings.

Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.

"This concept is the wave of the future in clinical decision-making for indeterminant lung nodules, and will hopefully include a blood test or something similar in the near future," senior author David Wilson, associate professor of medicine, cardiothoracic surgery and clinical and translational science at Pitt and co-director of the Lung Cancer Center at UPMC Hillman, told HCB News.

Shadows indicating the presence of nodules appear on a quarter of screenings throughout the U.S., but only four percent are actually cancerous. Scans alone cannot indicate who falls into this category, making clinicians hesitant to rule out cancer and leading to greater anxiety among patients as they undergo more costly, additional tests that can carry risks.

Feeding the data of 218 high-risk patients at UPMC into a machine learning algorithm, researchers constructed a model to calculate the probability of cancer. The model relied on the number of blood vessels surrounding the nodule, the number of nodules, and the numbers of years since the patient quit smoking as its most important factors, ruling out cancer if its probability fell below a certain threshold.

"These three features carry the most information about cancer status [of] all other variables," study coauthor Panayiotis (Takis) Benos, professor and vice chair of computational and systems biology and associate director of the Integrative Systems Biology Program at the University of Pittsburgh, told HCB News. "Also the information in each of them is complementary to the other two. Cancer typically needs more energy, so increased vasculature around a nodule has been correlated with cancer. Also the more years since [the subject] quit smoking, the less likely the module is cancerous."

Confirmation as to whether the patients had benign nodules or lung cancer was made later and compared to the model’s assessment. The comparison showed that 30 percent of those with benign nodules could have been spared additional testing, without missing a single case of cancer.

The researchers plan to examine the technique in a larger group. That study, involving 6,000 scans from the National Lung Screening Trial, is currently underway.

The findings were published in the journal, Thorax.

CT Homepage

You Must Be Logged In To Post A Comment

Aumente su conciencia de marca
Subastas + ventas Privadas
Consigue el mejor precio
Comprar Equipo/Piezas
Encuentra El Precio Más Bajo
Noticias diarias
Lee las últimas noticias
Examina todos los usuarios DOTmed
Ética en DOTmed
Ver nuestro programa de ética
El oro parte programa del vendedor
Recibir las solicitudes de PH
Programa de distribuidor con servicio gold
Recibe solicitudes
Proveedores de atención de salud
Ver todos los HCP (abreviatura de asistencia médica) Herramientas
Encontrar/rellenar un trabajo
Parts Hunter +EasyPay
Obtener presupuestos para piezas
Certificado recientemente
Ver usuarios certificados recientemente
Recientemente clasificado
Ver usuarios certificados recientemente
Central de alquiler
Alquila equipos por menos
Vende equipos/piezas
Obtén más dinero
Mantenga el foro de los técnicos
Buscar ayuda y asesoramiento
Petición sencilla de propuestas
Obtén presupuestos para equipos
Feria comercial virtual
Encuentra servicio para el equipo
El acceso y el uso de este sitio está conforme a los términos y a las condiciones de nuestro AVISO LEGAL & AVISO DE LA AISLAMIENTO
Característica de y propietario DOTmeda .com, inc. Copyright ©2001-2019, Inc.