Over 150 Total Lots Up For Auction at One Location - CA 05/31

Researchers succeed in imaging quantum events

Press releases may be edited for formatting or style | August 21, 2018 Medical Devices

Until now it has been impossible to take pictures of these quantum fluctuations. They occur at very low temperatures, and many times involve physical phases which cannot be seen by a regular microscope. Though indirect evidence for their presence appears in many measurements, no one has actually seen them. But an international group led by Prof. Beena Kalisky and Prof. Aviad Frydman, from the Department of Physics and the Institute for Nanotechnology at Bar-Ilan University in Israel, has succeeded in imaging quantum fluctuations for the first time. In their experiment, published today in Nature Physics, not only were quantum fluctuations visualized, but new information about the sizes, times and distributions of quantum events was extracted.

The researchers employed a unique microscope that can operate at very low temperatures to examine a material that undergoes a quantum phase transition. This microscope, called a scanning SQUID (Superconducting QUantum Interference Device), can detect very small magnetic signals and plot a map of their location with sub-micron resolution. The microscope uses quantum phenomena to convert magnetic signals to voltage and it is an ideal tool for investigating complex phenomena at the nano-scale.

The experiment was performed by graduate student Anna Kremen who used the sensitive magnetic measurements to identify different phases in the material. At very low temperatures, close to zero, the sample was pushed towards the region where quantum behavior is expected, while the scanning SQUID microscope was used to take pictures. Remarkably, quantum bubbles appeared at random locations. They switched on and off with time or appeared sporadically at different places. We are used to this behavior of air bubbles in boiling water, but now similar bubbles can also be seen in quantum matter.

This experiment opens a door to detailed investigations of quantum events. Images allow the extraction of physical quantities such as size, dynamics, distributions, and interactions with other phenomena. This novel ability to look at quantum fluctuations is expected to be a fundamental tool for the future development of quantum technology.

The research was supported by grants from the European Research Council, Israel Science Foundation, and the United States-Israel Binational Science Foundation.

Back to HCB News

You Must Be Logged In To Post A Comment