A new polymeric heart valve with a life span potentially longer than current artificial valves that would also prevent the need for the millions of patients with diseased heart valves to require life-long blood thinning tablets has been developed by scientists at the universities of Bristol and Cambridge. The team's latest in-vitro results, published in Biomaterials Science, suggest that the PoliValve could last for up to 25 years.
More than 1.3 million patients with diseased heart valves need valve replacement therapy globally each year. There are two artificial valves currently available for this; both have limitations either in durability or in biocompatibility. Biological valves are made from fixed pig or cow tissue and have good biocompatibility, meaning patients do not need life-long blood thinning tablets. However, they only last ten to 15 years before failing. While mechanical valves have very good durability, they have poor biocompatibility and patients must take daily blood thinning drugs to prevent life threatening complications due to blood clots.
Professor Geoff Moggridge, Head of the Structured Materials Group at Cambridge's Department of Chemical Engineering and Biotechnology and Professor Raimondo Ascione, NHS Adult Cardiac Surgeon and Head of the Translational Biomedical Research Centre (TBRC) at the University of Bristol have spent three years conducting developmental work and extra-vivo and in-vivo testing on the new PoliValve.
The PoliValve, created by Professor Moggridge, Dr Marta Serrani and Dr Joanna Stasiak at Cambridge and Professor Ascione in Bristol, and building on earlier work with Professor Costantino's group, is made from a special co-polymer and is designed to resemble the flexibility, biocompatibility and durability of a natural heart valve.
The device combines excellent durability with biocompatibility, addressing the limitations of current biological and mechanical artificial valves. It is made through a simple moulding process; hence it also reduces markedly manufacture and quality control costs.
Professor Moggridge, said: "These impressive results show the PoliValve is a promising alternative for valve replacement surgery. While further testing is needed, we think it could make a major difference to the hundreds of thousands of patients who get valve replacement surgery every year."
Initial testing in animal has been undertaken at Bristol's TBRC facility as a first mandatory in-vivo testing step to ensure safety. Long-term in-vivo testing is already planned and funded as a necessary additional step before bringing this new treatment to patients.