DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Ubicación actual:
>
>
> This Story

Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Molecular Imaging Homepage

Eden Radioisotopes secures reactor project funding for medical isotope production

MILabs selected by Columbia University Irving Medical Center for upgrades to its molecular imaging capabilities

Blue Earth Diagnostics continues to expand access to Axumin (fluciclovine (18F)) in Europe

NRC calls for additional feedback on training and experience requirements for radiopharmaceuticals requiring a written directive

SHINE breaks ground on medical isotope production facility

MR Solutions' PET/MRI scanner explores innovative magnetic nanoparticles as a bimodal imaging agent

ITM builds new production site in Munich area

NorthStar Medical closes $100 million financing with Oberland Capital to expand domestic Mo-99 radioisotope production capacity

Zionexa completes a second $5 million capital raise

SNMMI and ACR collaborate on clinical data registry for nuclear medicine

New PET imaging biomarker could better predict progression of Alzheimer's disease

Press releases may be edited for formatting or style
Researchers have discovered a way to better predict progression of Alzheimer's disease. By imaging microglial activation levels with positron emission tomography (PET), researchers were able to better predict progression of the disease than with beta-amyloid PET imaging, according to a study published in the April issue of the Journal of Nuclear Medicine.

According to the Alzheimer's Association, an estimated 5.3 million Americans are currently living with Alzheimer's disease. By 2025, that number is expected to increase to more than seven million. The hallmark brain changes for those with Alzheimer's disease include the accumulation of beta-amyloid plaques. When microglial cells from the central nervous system recognize the presence of beta-amyloid plaques, they produce an inflammatory reaction in the brain.

Story Continues Below Advertisement

Servicing GE Nuclear Medicine equipment with OEM trained engineers

We offer full service contracts, PM contracts, rapid response, time and material,camera relocation. Nuclear medicine equipment service provider since 1975. Click or call now for more information 800 96 NUMED



"The 18-kD translocator protein (TSPO) is highly expressed in activated microglia, which makes it a valuable biomarker to assess inflammation in the brain," said Matthias Brendel, MD, MHBA, at Ludwig-Maximilians-University of Munich in Germany. "In our study, we utilized TSPO-PET imaging to determine whether microglial activation had any influence on cognitive outcomes in an amyloid mouse model."

In the study, researchers compiled a series of PET images for 10 transgenic mice with beta-amyloid proteins and seven wild-type mice. TSPO PET imaging of activated microglia was conducted at eight, 9.5, 11.5 and 13 months, and beta-amyloid PET imaging was performed at eight and 13 months. Upon completion of the imaging, researchers then subjected the mice to a water maze in which the mice were to distinguish between a floating platform that would hold their weight and one that would sink. The tasks were performed several times a day during a 1.5-week period. Memory performance in the water maze was assessed by measuring the average travel time from the start point to a platform each day of training and by calculating the traveled distance at the last day of training. After completing the water maze task, immunohistochemistry analyses were performed for microglia, amyloid and synaptic density.

Transgenic mice with the highest TSPO PET signal in the forebrain or other areas associated with spatial learning tended to have better cognitive performance in the water maze, while beta-amyloid signals in the same areas of the brain showed no correlation to cognitive outcomes in the maze. Researchers found that an earlier microglial response to amyloid pathology in transgenic mice also protected synaptic density at follow-up. Specifically, transgenic mice with higher TSPO expression at eight months had much better cognitive outcomes in the water maze and higher synaptic density as confirmed by immunochemistry analyses.
  Pages: 1 - 2 - 3 >>

Molecular Imaging Homepage


You Must Be Logged In To Post A Comment

Anuncie
Aumente su conciencia de marca
Subastas + ventas Privadas
Consigue el mejor precio
Comprar Equipo/Piezas
Encuentra El Precio Más Bajo
Noticias diarias
Lee las últimas noticias
Directorio
Examina todos los usuarios DOTmed
Ética en DOTmed
Ver nuestro programa de ética
El oro parte programa del vendedor
Recibir las solicitudes de PH
Programa de distribuidor con servicio gold
Recibe solicitudes
Proveedores de atención de salud
Ver todos los HCP (abreviatura de asistencia médica) Herramientas
Trabajos/Entrenamiento
Encontrar/rellenar un trabajo
Parts Hunter +EasyPay
Obtener presupuestos para piezas
Certificado recientemente
Ver usuarios certificados recientemente
Recientemente clasificado
Ver usuarios certificados recientemente
Central de alquiler
Alquila equipos por menos
Vende equipos/piezas
Obtén más dinero
Mantenga el foro de los técnicos
Buscar ayuda y asesoramiento
Petición sencilla de propuestas
Obtén presupuestos para equipos
Feria comercial virtual
Encuentra servicio para el equipo
El acceso y el uso de este sitio está conforme a los términos y a las condiciones de nuestro AVISO LEGAL & AVISO DE LA AISLAMIENTO
Característica de y propietario DOTmeda .com, inc. Copyright ©2001-2019 DOTmed.com, Inc.
TODOS LOS DERECHOS RESERVADOS