DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Ubicación actual:
>
> This Story


Conexión o Registro to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Artificial Intelligence Homepage

FDA clears Aidoc AI solution for flagging PE in chest CTs Speeding up the time between scan and diagnosis

AI tool matches radiologist in amyloid detection for Alzheimer's Processes entire whole-brain slice with 98.7 percent accuracy

Smart intelligence for trauma caregivers Insights from Pooja Rao, co-founder and R&D head for Qure.ai

New machine learning algorithm could decide who is best for heart failure treatment Could help prevent sudden death from heart failure

FDA clears Zebra Medical Vision's HealthPNX AI solution for pneumothorax Can detect 40 findings that indicate presence of condition

Lack of AI security puts IoT medical devices in danger of cyberattacks New report highlights evolving risks in healthcare

FDA clears GE’s AI-based CT image reconstruction technology Available as upgrade to Revolution Apex scanner

AI comparable to radiologists in prostate cancer detection accuracy Identifies and predicts aggressiveness using MR scans

New 'roadmap' paves the way for AI innovations in radiology Aims to advance foundational AI research for imaging

Aidoc announces $27 million in VC funding to advance AI in imaging Brings company's total funding to $40 million

Imad B. Nijim

Beyond the hype: How practical AI is enhancing radiology

By Imad B. Nijim

Moving past the initial media hype, practitioners are beginning to demonstrate how AI applications can enhance the ability of radiologists to support better patient outcomes.

It’s a fact of life in our digital age that emerging technologies are often accompanied by overinflated expectations about their potential to transform the world.
Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.


Consider drones. Early supporters predicted that drones would soon shower our neighborhoods with smiling Amazon boxes and hover at our doors with hot Domino’s pizzas. Of course, they’ve since recognized many barriers to the drone distribution model. Setting aside original forecasts, engineers are finding many uses for drone technology in everyday applications.

With the exciting prospect of artificial intelligence in diagnostic imaging, prognosticators foretold of an overnight medical revolution – some even predicted that computers would eventually replace the need for physicians altogether. Thankfully, we are moving beyond the initial hype. For example, healthcare leaders are asking practical questions to leverage AI to improve patient care through better workflow, higher quality reporting and optimized efficiency. As a result, we seamlessly weave practical AI algorithms into daily workflows with the goal of enabling physicians to deliver the best care possible.

Realizing the potential of AI
Diagnostic imaging is an area of great potential for practical AI.

Image-based and natural language processing (NLP) models are being implemented today into clinical workflows and have demonstrated early success. For example, smart worklists are using AI to prioritize studies to ensure the right study is presented to the right radiologist. Other AI models are built to relieve radiologists of relatively mundane tasks, so they can focus on delivering high quality interpretations. In short, AI enables radiologists to focus their expertise where it matters most.

As an example, AI is proving to be a valuable triage tool. In an optimized radiology environment, studies that are part of a trauma or stroke protocol are prioritized in the physician’s worklist. Studies that are not part of a trauma or stroke protocol, sometimes contain a condition that requires expedited attention. A facility may request an interpretation of images “non-emergently,” but the patient may be experiencing an urgent condition – such as intra-cranial hemorrhage, pulmonary embolism or aortic dissection. AI can look at the images and identify the study for proper prioritization in the worklist.
  Pages: 1 - 2 - 3 >>

Artificial Intelligence Homepage


You Must Be Logged In To Post A Comment

Anuncie
Aumente su conciencia de marca
Subastas + ventas Privadas
Consigue el mejor precio
Comprar Equipo/Piezas
Encuentra El Precio Más Bajo
Noticias diarias
Lee las últimas noticias
Directorio
Examina todos los usuarios DOTmed
Ética en DOTmed
Ver nuestro programa de ética
El oro parte programa del vendedor
Recibir las solicitudes de PH
Programa de distribuidor con servicio gold
Recibe solicitudes
Proveedores de atención de salud
Ver todos los HCP (abreviatura de asistencia médica) Herramientas
Trabajos/Entrenamiento
Encontrar/rellenar un trabajo
Parts Hunter +EasyPay
Obtener presupuestos para piezas
Certificado recientemente
Ver usuarios certificados recientemente
Recientemente clasificado
Ver usuarios certificados recientemente
Central de alquiler
Alquila equipos por menos
Vende equipos/piezas
Obtén más dinero
Mantenga el foro de los técnicos
Buscar ayuda y asesoramiento
Petición sencilla de propuestas
Obtén presupuestos para equipos
Feria comercial virtual
Encuentra servicio para el equipo
El acceso y el uso de este sitio está conforme a los términos y a las condiciones de nuestro AVISO LEGAL & AVISO DE LA AISLAMIENTO
Característica de y propietario DOTmeda .com, inc. Copyright ©2001-2019 DOTmed.com, Inc.
TODOS LOS DERECHOS RESERVADOS