DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Ubicación actual:
>
> This Story


Conexión o Registro to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

X-Ray Homepage

The evolution of the medical physicist Part one in a series by Thomas J. Petrone

MR method could spare patients with skull lesions from CT, says study Could benefit children and pregnant women

FDA greenlights Samsung S-Vue 3.02 dose reduction solution Reduces X-ray dose exposure for pediatric patients

DR now makes up over 80 percent of US general radiography install base Up from only half in 2015

FDA clears GE’s AI-based CT image reconstruction technology Available as upgrade to Revolution Apex scanner

Philips Medical Systems sues ex-employee over alleged secrets theft Suit claims X-ray tube trade secrets were stolen before erasing hard drive

The upper extremity value of mini C-arms in the ER and OR Insights from Dr. Korsh Jafarnia

X-ray sheds new light on ancient mummy The Everhart Museum in PA tapped Geisinger Radiology for help

First ultra high-res CT scan performed on US patient Scanner at UC Davis can image anatomy as small as 150 microns

Joint Commission fluoro mandate may confuse providers, say experts Requires max exposure rates of imaging modes for fluroscopy devices

Zebra Medical Vision is developing
Textray, a deep learning model
that can perform automated chest
X-ray scans

Zebra Medical Vision unveils deep learning research for automated chest X-ray

por John R. Fischer , Staff Reporter
More than 150 million chest X-ray (CXR) scans are obtained annually in the U.S., making it the most commonly performed radiological exam worldwide. But a shortage of physicians able to interpret these exams hinders the ability to produce quick and accurate diagnoses for patients.

Machine and deep learning startup Zebra Medical Vision Ltd. has set out to change this, revealing this week its research in the development of Textray, a deep learning model solution designed to perform automated chest X-ray analyses.

Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.



“The likelihood for major diagnostic errors is directly correlated with both shift length and volume of examinations being read, a reminder that diagnostic accuracy varies substantially even at different times of the day for a given radiologist,” said the authors in their study. “Hence, there exists an immense unmet need and opportunity to provide immediate, consistent and expert-level insight into every CXR.”

CXRs are considered the most difficult of exams by the radiology community with even experts committing clinically substantial errors in 3-6 percent of studies and minor ones in 30 percent.

The worldwide shortage of radiologists often causes this task to fall on radiographic technicians in Africa and Europe and non-radiology physicians in the U.S. for preliminary interpretations to decrease waiting time at the expense of diagnostic accuracy.

Applying a sentence boundary algorithm to 2.1 million CXR studies, the authors identified and tagged a relatively small set of sentences to produce 959,000 studies for training the Textray model to identify the 40 most prevalent pathologies found on CXRs, taking into account patient frontal and lateral scans.

Twelve of the findings were then used to compare Textray’s performance to that of three expert radiologists, producing 95 percent confidence intervals in average agreement rates for ten of the twelve, excluding rib fracture and hilar prominence.

Additional testing of all 40 findings found similarities in performances for most. Comparisons for Vertebral height loss, consolidation, rib fracture, and kyphosis were noted to be accurately detected using lateral view.

“We still have a additional development, validation and regulatory work to do before a product can go to market, but those are the steps we will be taking over the next few months," Elad Benjamin, co-founder and CEO of Zebra Medical Vision, told HCB News. "We believe we can make a significant impact by helping radiologists manage their X-ray workload in a more efficient and accurate way by providing an automated analysis tool for that specific modality."
  Pages: 1 - 2 >>

X-Ray Homepage


You Must Be Logged In To Post A Comment

Anuncie
Aumente su conciencia de marca
Subastas + ventas Privadas
Consigue el mejor precio
Comprar Equipo/Piezas
Encuentra El Precio Más Bajo
Noticias diarias
Lee las últimas noticias
Directorio
Examina todos los usuarios DOTmed
Ética en DOTmed
Ver nuestro programa de ética
El oro parte programa del vendedor
Recibir las solicitudes de PH
Programa de distribuidor con servicio gold
Recibe solicitudes
Proveedores de atención de salud
Ver todos los HCP (abreviatura de asistencia médica) Herramientas
Trabajos/Entrenamiento
Encontrar/rellenar un trabajo
Parts Hunter +EasyPay
Obtener presupuestos para piezas
Certificado recientemente
Ver usuarios certificados recientemente
Recientemente clasificado
Ver usuarios certificados recientemente
Central de alquiler
Alquila equipos por menos
Vende equipos/piezas
Obtén más dinero
Mantenga el foro de los técnicos
Buscar ayuda y asesoramiento
Petición sencilla de propuestas
Obtén presupuestos para equipos
Feria comercial virtual
Encuentra servicio para el equipo
El acceso y el uso de este sitio está conforme a los términos y a las condiciones de nuestro AVISO LEGAL & AVISO DE LA AISLAMIENTO
Característica de y propietario DOTmeda .com, inc. Copyright ©2001-2019 DOTmed.com, Inc.
TODOS LOS DERECHOS RESERVADOS