Over 90 Total Lots Up For Auction at One Location - WA 04/08

Remote-Control Nanoparticles Deliver Drugs Directly Into Tumors

by Bradley Rose, Senior Designer | December 11, 2007
Dark gray nanoparticles
carry different
drug payloads.
MIT scientists have devised remotely controlled nanoparticles that, when pulsed with an electromagnetic field, release drugs to attack tumors. The innovation, reported in the Nov. 15 online issue of Advanced Materials, could lead to the improved diagnosis and targeted treatment of cancer.

In earlier work the team, led by Sangeeta Bhatia, M.D., Ph.D., an associate professor in the Harvard-MIT Division of Health Sciences and Technology (HST) and in MIT's Department of Electrical Engineering and Computer Science, developed injectable multi-functional nanoparticles designed to flow through the bloodstream, home to tumors and clump together. Clumped particles help clinicians visualize tumors through magnetic resonance imaging (MRI).

With the ability to see the clumped particles, Bhatia's co-author in the current work, Geoff von Maltzahn, asked the next question: "Can we talk back to them?"

The answer is yes, the team found. The system that makes it possible consists of tiny particles (billionths of a meter in size) that are superparamagnetic, a property that causes them to give off heat when they are exposed to a magnetic field. Tethered to these particles are active molecules, such as therapeutic drugs.

Exposing the particles to a low-frequency electromagnetic field causes the particles to radiate heat that, in turn, melts the tethers and releases the drugs. The waves in this magnetic field have frequencies between 350 and 400 kilohertz--the same range as radio waves. These waves pass harmlessly through the body and heat only the nanoparticles. For comparison, microwaves, which will cook tissue, have frequencies measured in gigahertz, or about X a million times more powerful.

The tethers in the system consist of strands of DNA, "a classical heat sensitive material," said von Maltzahn, a graduate student in HST. Two strands of DNA link together through hydrogen bonds that break when heated. In the presence of the magnetic field, heat generated by the nanoparticles breaks these, leaving one strand attached to the particle and allowing the other to float away with its cargo.

One advantage of a DNA tether is that its melting point is tunable. Longer strands and differently coded strands require different amounts of heat to break. This heat-sensitive tuneability makes it possible for a single particle to simultaneously carry many different types of cargo, each of which can be released at different times or in various combinations by applying different frequencies or durations of electromagnetic pulses.